Results situation A,B,C,D

	A) 60mm in 60 min (60mm/h)		B) 30mm in 60 min (30mm/h)		C) 120mm in 2h (60mm/h)		D) 60mm in 2h (30mm/h)	
	Simulation	Manually	Simulation	Manually	Simulation	Manually	Simulation	Manually
Total Rain [m³]	59760	60000	29880	30000	64740	120000	32370	60000
Land surface storage [m³]	57686	18333	27806	0	62493	36667	30123	0
Underground unsaturated storage [m³]	0	39583	1	28500	1	75000	1	54000
Underground saturated storage [m³]	2074	2083	2074	1500	2247	8333	2247	6000
Groundwater table [m + datum]	0,0083	0,0083	0,0083	0,0060	0,009025	0,0333	0,009025	0,0240

Defult Settings

Terrayn type:

Surface: Open land Underground: Onbekend Project area: 1000x1000m Grid size: 0,5x0,5mMaaiveld: 1 m Datum Grondwater peil: 0 m datum

GROUND_BOTTOM_DISTANCE_M [m]:

Surface: 1m/day Underground: 0,05m/day

WATER STORAGE PERCENTAGE: 0.25 Droogte na neerslag: 0 uur Evaporatie: 0 mm/day

Calculation

Below I show the calculation I did for situation A. The calculations for situation B, C, D are done in the same way, by using an spread sheet.

Surface infiltration:

1:
$$C_{water} = W_{surface} = \frac{precipitation [mm]}{1000} = 0,060 [m]$$
2: $C_{top} = max(I_{con}, I_{surf}) = 0,042 [m/h]$
 $I_{con} = 0 \rightarrow no \ constructions \ pressent$
 $I_{surf} = \left(\frac{Surface \ GROUND_{INFILTRATIONMD}}{24 \ hour}\right) = \frac{1}{24} = 0,042 [m/h]$
3: $\Delta w_{unsat} = \min\left(C_{water}, (\Delta t * C_{top})\right) = 0,042 [m]$
 $C_{water} = 0,060 \ [m]$
 $\Delta t * C_{top} = 1u * 0,042 = 0,042 [m]$
4: $\Delta wTot_{Unsat} = \Delta w_{unsat} * opp = 0,042 * 1 \ 000 \ 000 = 41666 \ [m^3]$

 Δw_{unsat} = The surface infiltration which takes place [m]. $\Delta wTot_{_Unsat} = \text{Total surface infiltration [m}^3]$

 $\Delta t =$ Computational timestep.

 C_{water} = The amount of infiltration that can take place based on the amount of water on the surface.

 C_{top} = The amount of infiltration that can take place based on the infiltration values present.

 $W_{surface} =$ The amount of water (the water column) on

 $I_{con} = \text{The GROUND_INFILTRATION_MD}$ of a construction on a specific cell (if present).

 $I_{surf} =$ The GROUND_INFILTRATION_MD of the surface terrain type. This value should be interpreted as the vertical conductivity (Kv) of the sub-soil.

 $opp = project surface [m^2]$

Underground infiltration

1:
$$H_{unsat} = H_{surface} - WL_{underground} = 1 - 0 = 1 \text{ [m]}$$

2: $S = \frac{W_{unsat}}{H_{unsat}} = \frac{0.042}{1} = 0.042 \text{ [-]}$

$$W_{unsat} = \Delta w = 0.042 \text{ [m]}$$
3: $C_{inf} = \min(H_{unsat}, (\Delta t * I_{und})) = 0.05 \text{ [m]}$

$$H_{unsat} = 1 \text{ [m]}$$

$$\Delta t * I_{und} = 1u * 0.05 = 0.05 \text{ [m]}$$
4: $\Delta w_{sat} = C_{inf} * S = 0.05 * 0.042 = 0.002083 \text{ [m]}$
5 $\Delta w Tot_{Sat} = \Delta w_{Sat} * opp = 0.002083 * 1 000 000 = 2083 \text{ [m]}$

 $\Delta w_{sat} = \text{The underground infiltration which takes place [m]}.$ $\Delta wTot_{Sat} = \text{total underground infiltration [m}^3$]

 $\Delta t =$ Computational timestep.

terrain type.

 H_{unsat} = The height of the unsaturated zone.

S =Ratio of water to height in the unsaturated zone. C_{inf} = The height in the unsaturated zone which can be

subject to infiltration to the saturated zone.

 W_{unsat} = The amount of water in the unsaturated zone. The height of the water column if the equivalent amount of water was placed on the surface.

 $WL_{underground} =$ The groundwater level, relative to datum. $H_{surface} =$ The terrain height in the cell, relative to datum. I_{und} = The GROUND_INFILTRATION_MD of the underground

 $gl_{original} =$ Initial groundwater level [m+datum]

Final values

Storage terain surface:

$$S_{surface} = (Precipitation*opp) - \Delta w Tot_{sat} = \left(\frac{60mm}{1000}*1000000\right) - 41666 = 60000 - 41666 = 18333 \ [m^3]$$

Storage unsaturated zone:

$$S_{unsaturated} = \Delta wTot_{_Unsat} - \Delta wTot_{sat} = 41666 - 2083 = 39583 [m^3]$$

Storage unsaturated zone:

$$S_{Saturated} = \Delta w Tot_{_Sat} = 2083 [m^3]$$